主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法。更重要的是,理解PCA算法,对实现白化算法有很大帮助,很多算法都先用白化算法作预处理步骤。
假设你使用图像来训练算法,因为图像中相邻的像素高度相关,输入数据是有一定冗余的。具体来说,假如我们正在训练的16×16灰度值图像,记为一个256维向量,其中特征值对应每个像素的亮度值。由于相邻像素间的相关性,PCA算法可以将输入向量转换为一个维数低很多的近似向量,而且误差非常小。
在我们的实例中,使用的输入数据集表示为,维度 即 。假设我们想把数据从2维降到1维。(实际应用中,我们也许需要把数据从156维降到50维;在这里使用低维数据,主要是为了更好地可视化算法的行为)。下图是我们的数据集:
这些数据已经进行了预处理,使得每个特征 和 具有相同的均值(零)和方差。
为方便展示,根据 值的大小,我们将每个点分别涂上了三种颜色之一,但改颜色并不用于算法而仅用于图解。
PCA算法将寻找一个低维空间来投射我们的数据。从下图中可以看出, 是数据变化的主方向,而 是次方向。
也就是说,数据在 方向上的变化要比在 方向上大。
为更形式化地找出方向 和 ,我们首先计算出矩阵 ,如下所示:
假设 的均值为零,那么 就是x的协方差矩阵。(符号 ,读"Sigma",是协方差矩阵的标准符号。虽然看起来与求和符号 比较像,但它们其实是两个不同的概念。)
可以证明,数据变化的主方向 就是协方差矩阵 的主特征向量,而 是次特征向量。
你可以通过标准的数值线性代数运算软件求得特征向量(见实现说明).我们先计算出协方差矩阵的特征向量,按列排放,而组成矩阵:
此处, 是主特征向量(对应最大的特征值), 是次特征向量。以此类推,另记 为相应的特征值。
在本例中,向量 和 构成了一个新基,可以用来表示数据。令 为训练样本,那么 就是样本点 在维度 上的投影的长度(幅值)。同样的, 是 投影到 维度上的幅值。
旋转数据
至此,我们可以把 用 基表达为:
(下标“rot”来源于单词“rotation”,意指这是原数据经过旋转(也可以说成映射)后得到的结果)
对数据集中的每个样本 分别进行旋转: for every ,然后把变换后的数据 显示在坐标图上,可得:
这就是把训练数据集旋转到 , 基后的结果。一般而言,运算 表示旋转到基 ,, ..., 之上的训练数据。矩阵 有正交性,即满足 ,所以若想将旋转后的向量 还原为原始数据 ,将其左乘矩阵即可: , 验算一下: .
数据降维
数据的主方向就是旋转数据的第一维 。因此,若想把这数据降到一维,可令:
更一般的,假如想把数据 降到 维表示 (令 ),只需选取 的前 个成分,分别对应前 个数据变化的主方向。
PCA的另外一种解释是: 是一个 维向量,其中前几个成分可能比较大(例如,上例中大部分样本第一个成分 的取值相对较大),而后面成分可能会比较小(例如,上例中大部分样本的 较小)。
PCA算法做的其实就是丢弃 中后面(取值较小)的成分,就是将这些成分的值近似为零。具体的说,设 是 的近似表示,那么将 除了前 个成分外,其余全赋值为零,就得到:
在本例中,可得 的点图如下(取 ):
然而,由于上面 的后项均为零,没必要把这些零项保留下来。所以,我们仅用前 个(非零)成分来定义 维向量 。
这也解释了我们为什么会以 为基来表示数据:要决定保留哪些成分变得很简单,只需取前 个成分即可。这时也可以说,我们“保留了前 个PCA(主)成分”。
还原近似数据
现在,我们得到了原始数据的低维“压缩”表征量,反过来。如果给定 ,我们应如何还原原始数据x呢?要转换回来,只需 即可。进一步,我们把 看作将 的最后 个元素被置0所得的近似表示,因此如果给定 ,可以通过在其末尾添加 个0来得到对 的近似,最后,左乘 便可近似还原出原数据 。具体来说,计算如下:
上面的等式基于先前对U的定义。在实现时,我们实际上并不先给 填0然后再左乘 ,因为这意味着大量的乘0运算。我们可用 来与 的前 列相乘,即上式中最右项,来达到同样的目的。将该算法应用于本例中的数据集,可得如下关于重构数据 的点图:
由图可见,我们得到的是对原始数据集的一维近似重构。
在训练自动编码器或其它无监督特征学习算法时,算法运行时间将依赖于输入数据的维数。若用 取代 作为输入数据,那么算法就可使用低维数据进行训练,运行速度将显著加快。对于很多数据集来说,低维表征量 是原数据集的极佳近似,因此在这些场合使用PCA是很合适的,它引入的近似误差的很小,却可显著地提高你算法的运行速度。
选择主成分个数
我们该如何选择 ,即保留多少个PCA主成分?在上面这个简单的二维实验中,保留第一个成分看起来是自然的选择。对于高维数据来说,做这个决定就没那么简单:如果 过大,数据压缩率不高,在极限情况 时,等于是在使用原始数据(只是旋转投射到了不同的基);相反地,如果 过小,那数据的近似误差太太。
决定 值时,我们通常会考虑不同 值可保留的方差百分比。具体来说,如果 ,那么我们得到的是对数据的完美近似,也就是保留了100%的方差,即原始数据的所有变化都被保留下来;相反,如果 ,那等于是使用零向量来逼近输入数据,也就是只有0%的方差被保留下来。
一般而言,设 表示 的特征值(按由大到小顺序排列),使得 为对应于特征向量 的特征值。那么如果我们保留前 个成分,则保留的方差百分比可计算为:
在上面简单的二维实验中, , 。因此,如果保留 个主成分,等于我们保留了 ,即91.3%的方差。
以处理图像数据为例,一个惯常的经验法则是选择 以保留99%的方差,换句话说,我们选取满足以下条件的最小 值:
对其他应用,如不介意引入稍大的误差,有时也保留90-98%的方差范围。
对图像数据应用PCA算法
为使PCA算法能有效工作,通常我们希望所有的特征 都有相似的取值范围(并且均值接近于0)。如果你曾在其它应用中使用过PCA算法,你可能知道有必要单独对每个特征做预处理,即通过估算每个特征 的均值和方差,而后将其取值范围规整化为零均值和单位方差。但是,对于大部分图像类型,我们却不需要进行这样的预处理。假定我们将在自然图像上训练算法,此时特征 代表的是像素 的值。所谓“自然图像”,不严格的说,是指人或动物在他们一生中所见的那种图像。
注:通常我们选取含草木等内容的户外场景图片,然后从中随机截取小图像块(如16x16像素)来训练算法。在实践中我们发现,大多数特征学习算法对训练图片的确切类型并不敏感,所以大多数用普通照相机拍摄的图片,只要不是特别的模糊或带有非常奇怪的人工痕迹,都可以使用。
在自然图像上进行训练时,对每一个像素单独估计均值和方差意义不大,因为(理论上)图像任一部分的统计性质都应该和其它部分相同,图像的这种特性被称作平稳性(stationarity)。
具体而言,为使PCA算法正常工作,我们通常需要满足以下要求:(1)特征的均值大致为0;(2)不同特征的方差值彼此相似。对于自然图片,即使不进行方差归一化操作,条件(2)也自然满足,故而我们不再进行任何方差归一化操作(对音频数据,如声谱,或文本数据,如词袋向量,我们通常也不进行方差归一化)。实际上,PCA算法对输入数据具有缩放不变性,无论输入数据的值被如何放大(或缩小),返回的特征向量都不改变。更正式的说:如果将每个特征向量x都乘以某个正数(即所有特征被放大或缩小相同的倍数),PCA的输出特征向量都将不会发生变化。
既然我们不做方差归一化,唯一还需进行的规整化操作就是均值规整化,其目的是保证所有特征的均值都在0附近。根据应用,在大多数情况下,我们并不关注所输入图像的整体明亮程度。比如在对象识别任务中,图像的整体明亮程度并不会影响图像中存在的是什么物体。更为正式地说,我们对图像块的平均亮度值不感兴趣,所以可以减去这个值来进行均值规整化。
具体的步骤是,如果代表16×16的亮度(灰度)值(n=256),可用如下算法来对每幅图像进行零均值化操作:
, for all
请注意:1)对每个输入图像块 都要单独执行上面两个步骤,2)这里的 是指图像块 的平均亮度值。尤其需要注意的是,这和为每个像素 单独估算均值是两个完全不同的概念。
如果你处理的图像并非自然图像(比如,手写文字,或者白背景正中摆放单独物体),其他规整化操作就值得考虑了,而那种做法最合适也取决于具体应用场合。但对自然图像而言,对每幅图像进行上述的零均值规整化,是默认而合理的处理。